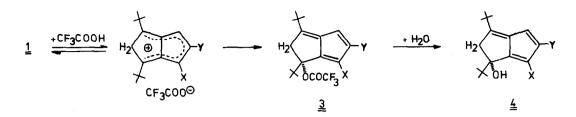
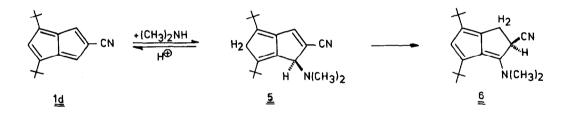

CHEMICAL REACTIVITY OF PENTALENE DERIVATIVES

Minoru Suda and Klaus Hafner

Institut für Organische Chemie der Technischen Hochschule Darmstadt (Germany) (Received in UK 18 March 1977; accepted for publication 2 June 1977)


In previous papers [1,2] we described a facile synthesis of the pentalene derivatives $\underline{1}$ from 1,3di-tert-buty1-6-dimethylaminofulvene and acetylenes. Although several syntheses of other stable pentalenes have been reported in the literature [3], knowledge of their chemical reactivity is only meager at present. Therefore we have investigated the chemistry of the pentalenes $\underline{1}$. Where-

as <u>la</u> is stable as such, both in solution and in crystalline state, <u>lb</u> - <u>ld</u> are in equilibrium with their dimers <u>2</u> in solution^[2]. The pentalenes <u>l</u> are stable in air but sensitive to both acids and bases. When <u>la</u> was treated with trifluoroacetic acid in methylene chloride at 25° C, the alcohol <u>4a</u>^[4] was isolated in 50% yield after chromatography on silica gel^[5], indicating a protonation at the 5-position of the pentalene system, followed by the formation of the trifluoroacetate <u>3a</u>, which was hydrolyzed on silica gel.


Direct evidence for the position of protonation was obtained by monitoring the reaction of $\underline{1d}$ with CF₃COOD in CDC1₃ by nmr spectroscopy. After a reaction period of about 30 min at ambient temperature, a band at δ 4.90 due to the proton at C-5 of $\underline{1d}$ disappeared almost completely,

2453

whereas all other absorptions of $\underline{1}\underline{d}$ were about one-half as strong as the initial intensities. A new set of peaks appeared which were attributable to the corresponding trifluoroacetate $\underline{3}\underline{d}$ [δ 1.03(9H,s), 1.37(9H,s), 6.24(1H,bs), 7.12(1H,bs)]. This proves that pentalenes $\underline{1}$, when treated with trifluoroacetic acid, are first protonated at the 5-position, followed by the formation of addition products of type $\underline{4}^{[6]}$.

Nucleophiles attack the $1-(\equiv 3)$ position of the pentalenes <u>1</u>. When dimethylamine was bubbled into a methylene chloride solution of <u>1d</u>, a quick color change from green to orange was observed. Chromatography of this orange solution on silica gel regenerated <u>1d</u> partly (70%) and the pale yellow product <u>6</u> was isolated (28%). On the other hand, if the above orange solution was kept at 25°C for 2 h before chromatography, only a small amount of <u>1d</u> was recovered and <u>6</u> was obtained in 73% yield. This result suggests the primary formation of an unstable intermediate,

which can either eliminate dimethylamine on a silica gel column to form $\underline{1d}$, or tautomerize to the stable fulvenoid 1.2-dihydropentalene derivative $\underline{6}$. The strucutre of the intermediate, the 1.5-dihydropentalenederivative $\underline{5}$, was concluded from the nmr spectrum of the crude reaction mixture, which contains $\underline{5}$ (δ 1.22(18H,s), 2.39(6H,s), 3.38(2H,bs), 4.50(1H,s), 7.23(1H,s)) besides $\underline{6}$.

With dienophiles and dienes the pentalenes $\frac{1}{2}$ form cycloadducts. Although dimethyl acetylenedicarboxylate and tetracyanoethylene were not susceptible, dicyanoacetylene reacted with \underline{Ia} , \underline{Ib} and \underline{Ic} in refluxing benzene under formation of the adducts $\underline{7a}^{[7]}$, $\underline{7b}$ and $\underline{7c}$ in 57, 56 and 25%

isolated yields respectively. The attack of the acetylene at the 4,5-position of 1 was supported by the nmr and uv spectra of the adducts.

Accordingly pentalenes $\underline{1}$ react with dienophiles on the electron-rich five-membered ring, even when this portion of the molecule is substituted by bulky groups. Attempts to isomerize $\underline{7}$ like the adducts of 1,3-bis(dimethylamino)pentalenes^[8] and 1.3.5-tri-tert.-butyl-pentalene^[3] with acetylenes to azulene derivatives have met with no success so far.

In contrast to the above reaction, the pentalenes $\underline{1}$ add dienes at the electron-poor five-membered ring in a Diels-Alder reaction. E.g. $\underline{12}$ and $\underline{1d}$ reacted at 140° C with cyclopentadiene, generated in situ from its dimer, to single adducts $\underline{8a}$ (58%) and $\underline{8d}$ (61%). The endo-structure of $\underline{8}$

was deduced from their nmr spectra, which exhibit a doublet (J=5Hz) at δ 3.7, attributable to the methine proton derived from the pentalene part. The regio-selectivity, which is also found in the reaction of <u>la</u> with dicyanoacetylene (<u>vide supra</u>), can be explained by the π -bond localization in this non-symmetrical pentalene system. A single crystal x-ray analysis^[9] of <u>la</u> confirmed this suggestion and revealed that the bonds C(2)-C(3) and C(5)-C(6) are much shorter than the bonds C(1)-C(2) and C(4)-C(5). In accordance with that, [4+2]cycloadditions with dienes take place at the double bond C(2)-C(3), carrying an electron-withdrawing group, while those with dicyanoace-tylene occur as [8+2]cycloadditions at C(4)-C(5) of the electron-rich moiety of the bicyclic tetraene system.

In summary, the pentalenes 1 show a marked reactivity towards acids, bases, dienophiles and dienes, with a high regio-selectivity.

compound mp (C ^O)	¹ H-nmr spectra in CDC1 ₃ (60 MHz, TMS-internal standard)	uv-visible spectra (λ _{max} (nm) (logε)	ir-spectra (cm ⁻¹)
<u>4a</u> yellow syrup	o.88(9H,s), 1.33(9H,s), 3.17(1H,d,J=19.5Hz), 3.43(1H,d,J=19.5Hz), 3.82(6H,s), 6.81(1H,s).	366(2.81) ^{a)} 298(4.22) 245(4.14)	3460 ^{C)} 1725 1690
<u>6</u> yellow prisms 122-123 ⁰	o.97(9H,s), 1.19(9H,s), 3.o5(6H,s), 3.13(1H,m), 3.41(2H,m), 6.21(1H,d,J=1.5Hz).	344(3.85) ^{b)} 3o4(3.81) 265(3.71)	
<u>7a</u> orange needles 147-149 ⁰	1.09(9H,s), 1.38(9H,s), 3.83(3H,s), 3.88(3H,s), 4.53(1H,s), 6.58(1H,s).	418(2.97) ^{a)} 310(4.00) 233(4.29)	2220 ^{d)} 1710
7b yellow blocks 142-143°	1.08(9H,s),1.42(9H,s), 3.85(3H,s), 4.48(1H,s), 6.66(1H,d,J=1Hz), 7.06(1H,d,J=1Hz).	408(2.74) ^{a)} 307(3.96) 232(4.32)	
<u>7c</u> yellow prisms 208-209 ⁰	1.09(9H,s), 1.44(9H,s), 4.50(1H,s), 6.73(1H,bs), 7.05(1H,bs), 9.93(1H,s).	397(2.73) ^{a)} 309(4.02) 244(4.35)	
<u>8a</u> red oil	1.12(9H,s), 1.20(9H,s), 1.82(2H,m), 3.13(1H,m), 3.30(1H,m), 3.66(1H,d,J=5Hz), 3.70(3H,s), 3.80(3H,s), 5.95(2H,m), 6.30(1H,s).	419(2.71) ^{b)} 273(4.07)	
8d yellow plates 90-90.5°	1.15(9H,s), 1.19(9H,s), 1.97(2H,m), 3.22(2H,m), 3.67(1H,d,J=4.5Hz), 5.81(2H,m), 6.08(1H,s), 6.22(1H,s).	397(2.82) ^{b)} 260(4.00)	2220 ^d)
	a): in dioxane b): in hexane c): neat	d): KBr	

Physical Properties of the Compounds 4 - 8

We would like to thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for generous support of this work, the Alexander von Humboldt-Stiftung for a research fellowship for M.S..

REFERENCES AND NOTES

- [1] K. Hafner and M. Suda, Angew.Chem. 88, 341(1976); Angew.Chem.Int.Ed.Engl. 15, 314(1976).
- [2] M. Suda and K. Hafner, Tetrahedron Lett. 1977, preceding paper.
- K. Hafner and H.U. Süss, <u>Angew.Chem.</u> 85, 626(1973); <u>Angew.Chem.Int.Ed.Engl.</u> 12, 575 (1973);
 K. Hafner, H. Diehl and H.U. Süss, <u>Angew.Chem.</u> 88, 121(1976); <u>Angew.Chem.Int.Ed.Engl.</u> 15, 104(1976) and references cited therein.
- [4] All new compounds gave correct elementary analyses.
- [5] The same alcohol 4 was obtained when 14 was chromatographed on aluminum oxide.
- [6] The reaction of <u>la</u> with CF₃COOD in CDCl₃ was so fast that the H-D exchange could not be observed. The product was the trifluoroacetate <u>3a</u> as judged from the nmr spectrum (CDCl₃): δ 0.95(9H,s), 1.38(9H,s), 3.83(3H,s), 3.87(3H,s), 7.18(1H,s).
- [7] By addition of dicyanoacetylene in 5,6-position an isomeric adduct was formed as a minor product (10%) [nmr (CDCl₃): δ 1.03(9H,s), 1.43(9H,s), 3.83(3H,s), 3.85(3H,s), 4.49(1H,s), 6.95(1H,s)].
- [8] K. Hafner, Pure Appl. Chem. 28, 153 (1971).
- [9] H.J. Lindner and B. Kitschke, Tetrahedron Lett. 1977, following paper.